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LECTURE 6: VAPNIK CHERVONENKIS (VC) DIMENSION

1 Overview of the Lecture

This lecture introduces the Vapnik-Chervonenkis (VC) dimension, a combinatorial measure of the complexity
of a hypothesis class of binary classifiers. We will define it, explore its properties, and connect it to the
growth function via the Sauer-Shelah Lemma. We then bridge the gap to generalization bounds by going
back to Rademacher complexity from prior lectures, a data-dependent measure of complexity, and show how
it can be bounded using the VC dimension.

2 VC Dimension

In the previous lecture, we saw that if the Rademacher complexity of a hypothesis class H is small, Then the
true risk of every function in H can be bounded in terms of its empirical risk and the Rademacher complexity
of H on samples of size n.

In this lecture, we want to characterize hypothesis classes for which (over a given sample space) Rademacher
complexity can be bounded. Throughout, we will restrict attention to the binary classification setting and
allow the size of H to be possibly infinite.

A motivating example Consider a dataset Z = {z1, z2, ..., zn}. Number of maximum possible labelings in
this case is 2n: every data point z can be classified into two classes and there are n number of points. This
holds good when the hypothesis class H is rich. But what if it is a restrictive class: consider the class of
thresholding functions on the real line.

H = {h : R → {0, 1} | h(z) = 1 [z > θ] , θ ∈ R}
∪ {h : R → {0, 1} | h(z) = 1 [z ≤ θ] , θ ∈ R}

R
10

θ

If we sort the points in increasing or decreasing magnitude, the points can be labeled in a maximum number
of 2n ways. Possible labels:



z1 zn−2 zn−1... zn
0 0 0... 0
1 0 0... 0
1 1 0... 0
... ... ... ...
1 1 1... 0

 or



z1... zn−2 zn−1 zn
0... 0 0 1
0... 0 1 1
0... 1 1 1
... ... ... ...

1... 1 1 1


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Any other combination of 1’s and 0’s for labels can not be achieved by H.

VC dimension provides an easy complexity measure for such hypothesis classes.

Definition 1 (Growth Function). Given a hypothesis class H ⊆ {h | h : Z → {0, 1}} and a dataset
S = {z1, z2, ..., zn} , z ∈ Z, we set H(S) as

{
h(z1, ...h(zn) ∈ {0, 1}n | h ∈ H

}
. Then growth function is

defined as:

G(H, n) = max
S∈Z

|H(S)|

It is upper bounded at 2n.

Definition 2 (Shattering). H shatters a finite set S ⊂ Z if |H(S)| = 2|S| .

Definition 3 (VC dimension). The VC dimension of a hypothesis class H denoted as VC dim(H) is the max
size of set S ⊂ Z that can be shattered by H.

VC dim(H) = max
n∈N

{n | G(H, n) = 2n}

2.1 Example: VC dimension of threshold functions

Recall the threshold class on R:

H =
{

hθ : R → {0, 1}
∣∣ hθ(z) = 1[z>θ] or hθ(z) = 1[z≤θ], θ ∈ R

}
.

We assume sample points are distinct and write a sorted sample as z1 < z2 < · · · < zn.

Case n = 1. For S = {z1} we can realize both labelings:

(0) : take hθ(z) = 1[z>θ] with θ > z1, (1) : take hθ(z) = 1[z>θ] with θ < z1.

Hence |HS| = 2 = 21, so a single point is shattered.

Case n = 2. Let S = {z1, z2} with z1 < z2. We exhibit hypotheses realizing all four labelings:

• (0, 0): choose hθ(z) = 1[z>θ] with θ > z2.

• (1, 1): choose hθ(z) = 1[z>θ] with θ < z1.

• (0, 1): choose hθ(z) = 1[z>θ] with z1 < θ < z2.

• (1, 0): choose hθ(z) = 1[z≤θ] with z1 < θ < z2.

Thus |HS| = 4 = 22, so any two distinct points can be shattered.
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No set of size 3 can be shattered. Let S = {z1, z2, z3} with z1 < z2 < z3. Any h ∈ H is either of
the form h(z) = 1[z>θ] (which yields a labeling vector with the pattern 0, . . . , 0, 1, . . . , 1) or of the form
h(z) = 1[z≤θ] (which yields 1, . . . , 1, 0, . . . , 0). In either case, the labeling on sorted points has at most one
sign change. Therefore the patterns (1, 0, 1) and (0, 1, 0) cannot be realized by any h ∈ H. Hence, no set of
size 3 is shattered.

Since some set of size 2 is shattered but no set of size 3 is shattered, we have

VCdim(H) = 2.

2.1.1 Example : VC dimension of linear functions in R2

Let
H =

{
hw,b : R2 → {−1, 1}

∣∣∣ hw,b(x) = sign(⟨w, x⟩+ b), w ∈ R2, b ∈ R
}

,

with the convention sign(t) = 1 for t > 0 and sign(t) = −1 for t ≤ 0. We show VCdim(H) = 3.

(i) A set of size 3 is shattered. Choose three noncollinear points S = {x1, x2, x3} ⊂ R2 (for example, the
vertices of a triangle). For any desired labeling of these three points, there are only the following types to
realize:

• all labels equal: trivial (take any line putting all points on one side);

• exactly one point labeled +1 and two labeled −1: separate that single point by a line closely surround-
ing it on the +1 side;

• exactly two points labeled +1 and one labeled −1: separate the single −1 point from the other two by
a line.

Because the three points are not collinear, for each of the 23 labelings, one can place a strict linear separator
so that the +1-labeled points lie on the positive side and the −1-labeled points lie on the negative side. Hence
|HS| = 8 = 23: the set S is shattered. Thus VCdim(H) ≥ 3.

(ii) No set of size 4 is shattered. Let T = {y1, y2, y3, y4} be any set of four distinct points in R2. There
are two mutually exclusive geometric configurations:

Case A: One point lies in the convex hull of the other three.
Let y4 ∈ conv({y1, y2, y3}). Consider the labeling that assigns +1 to the three outer points y1, y2, y3 and
−1 to the interior point y4. If some linear threshold hw,b realized this labeling, then the positive-labeled
points would lie in the open halfspace {x : ⟨w, x⟩+ b > 0} and the negative-labeled points would lie in the
open halfspace {x : ⟨w, x⟩+ b < 0}. But the open halfspace containing y1, y2, y3 is convex, hence it must
contain the convex hull of {y1, y2, y3}, and therefore would contain y4 as well — contradiction. Thus, this
labeling is unrealizable, so T is not shattered.

Case B: All four points are in convex position (vertices of a convex quadrilateral).
Label the points in clockwise order around the quadrilateral as y1, y2, y3, y4. Consider the labeling that
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assigns +1 to y1 and y3 (two opposite vertices) and −1 to y2 and y4.No linear function can output this
labeling. The labeling (+1,−1,+1,−1) is unrealizable by any linear function. Hence T is not shattered.

Since every 4-point set falls into Case A or Case B, and in each case we show a labeling that no linear
function can realize, no set of size 4 is shattered by H. Thus VCdim(H) ≤ 3.

Combining (i) and (ii), we have VCdim(H) = 3.

2.1.2 V C dimension of finite hypothesis classes

Let H be a finite hypothesis class. Then, for any set S we have |HS| ≤ |H| and thus S cannot be
shattered if |H| < 2|s| . This implies that VCdim(H) ≤ log2(|H|). Note that there are cases when
VCdim(H) << log2(|H|) (ex: hypothesis class of threshold functions).

3 Growth function upper bound

If the VC dimension of a hypothesis class H is d, it can shatter at most d data points. This means if there
are n data points(n < d) in a set S , the growth function G(H, n) increase is bounded at 2n. It increases
exponentially with n, till the limit d is reached.

When n crosses the hypothesis class VC dimension, H can no longer shatter S . But what is the maximum
number of unique labelings H can achieve on points in S? This is answered in the following lemma.

Lemma 1 (Sauer-Shelah Lemma). The growth function and VC-dimension of a hypothesis class H ⊂
{h | h : Z → {0, 1}} fulfills

G(H, n) ≤
d

∑
i=0

(
n
i

)

where VC-dim(H) = d < ∞

Proof. Fix arbitrary S = {z1, z2, ..., zn}.

Note: |{B ⊆ S | H shatters B}| ≤ (n
0) + (n

1)... = ∑d
i=0 (

n
i )

We will show:|H(S)| ≤ |{B ⊆ S | H shatters B}|

Proof by induction:

1. Base case: We consider n = 1. Only one data point will yield |H(S)| as 1 or 2, which satisfies the
lemma statement.

2. Induction hypothesis: We assume that for any T ⊂ Z, |T| < n,

|H(T)| ≤ |{B ⊆ T | H shatters B}|
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3. General case: S ′ = {z2, z3, ..., zn}

Define:

H(S ′) = Y0 = {(0, y2, ..yn) : (y2, ..yn) ∈ H(S) or (1, y2, ..yn) ∈ H(S)}
Y1 = {(0, y2, ..yn) : (y2, ..yn) ∈ H(S) and (1, y2, ..yn) ∈ H(S)}

Observe: H(S) = |Y0|+ |Y1|, and

|Y0| =
∣∣H(S ′)

∣∣ ≤ ∣∣{B ⊆ S ′ | H shatters B
}∣∣ , (inductive hypothesis)

= |{B ⊆ S : z1 /∈ B,H shatters B}|

Define:

H′ =
{

h ∈ H : ∃h′ ∈ H, h(z1) ̸= h′(z1) and h(zi) = h′(zi)∀i = 2, 3.., n
}

Observe: If H′ shatters B ⊆ S ′, then H′ also shatters B ∪ {z1} ⊆ S ′. Therefore Y1 = H′(S ′)

|Y1| =
∣∣H′(S ′)

∣∣ ≤ ∣∣{B ⊆ S ′ | H′ shatters B
}∣∣ , (ind. hypothesis)

=
∣∣{B ⊆ S ′ | H′ shatters B ∪ {z1}

}∣∣
=
∣∣{B ⊆ S | z1 ∈ B and H′ shatters B

}∣∣
≤ |{B ⊆ S | z1 ∈ B and H shatters B}|

Recall:

H(S) = |Y0|+ |Y1|
≤ |{B ⊆ S : z1 /∈ B and H shatters B}|+ |{B ⊆ S : z1 ∈ B and H shatters B}|
= |{B ⊆ S : H shatters B}|

(Result)

Lemma 2 (Massart’s Lemma). Let A ⊂ Rn be a finite set. Let σ = (σ1, σ2, . . . , σn) be n independent
Rademacher random variables. Then

Eσ

[
max
a∈A

n

∑
i=1

σiai

]
≤
√

2 log |A| max
a∈A

∥a∥2.

Proof. (Exercise from lecture) The proof uses the exponential moment method. Let Z = maxa∈A ∑i σiai.
For any s > 0, by Jensen’s inequality:

Z =
1
s

log(esZ) =
1
s

log
(

max
a∈A

es ∑i σiai

)
≤ 1

s
log

(
∑
a∈A

es ∑i σiai

)
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Taking expectations and applying Jensen’s inequality again (since log is concave):

E[Z] ≤ 1
s

E

[
log

(
∑
a∈A

es ∑i σiai

)]
≤ 1

s
log

(
E

[
∑
a∈A

es ∑i σiai

])
=

1
s

log

(
∑
a∈A

E
[
es ∑i σiai

])

By independence of the σi, E
[
es ∑i σiai

]
= ∏n

i=1 E [esσiai ]. We use Hoeffding’s Lemma, which for a
Rademacher variable implies E[esσiai ] ≤ es2a2

i /2. Thus:

n

∏
i=1

E [esσiai ] ≤
n

∏
i=1

es2a2
i /2 = e

s2
2 ∑i a2

i = e
s2
2 ∥a∥2

2

Let R = maxa∈A ∥a∥2. We get:

E[Z] ≤ 1
s

log

(
∑
a∈A

e
s2R2

2

)
=

1
s

log
(
|A|e s2R2

2

)
=

log |A|
s

+
sR2

2

This bound holds for any s > 0. We minimize it by setting the derivative w.r.t s to zero, which yields

s =
√

2 log |A|
R . Plugging this optimal s back in gives the final result:

E[Z] ≤ R
√

2 log |A| =
√

2 log |A| · max
a∈A

∥a∥2

Lemma 3. Let H ⊆ { f | f : Z → {0, 1}} be a hypothesis class. The Rademacher complexity of H with n
samples is bounded as

Rn(H) ≤
√

2 logG(H, n)
n

Proof. By definition, the expected Rademacher complexity of H with n samples is

Rn(H) = ES∼Dn
[
R̂S(H)

]
,

where for a fixed sample S = (z1, . . . , zn) the empirical Rademacher complexity is

R̂S(H) = Eσ

[
sup
h∈H

1
n

n

∑
i=1

σih(zi)

∣∣∣∣∣ S

]
.

Fix a sample S. Let
HS := {(h(z1), . . . , h(zn)) ∈ {0, 1}n : h ∈ H}

denote the set of all label vectors realized by hypotheses in H on S. Then we can rewrite the inner supremum
as a maximization over HS:

sup
h∈H

1
n

n

∑
i=1

σih(zi) =
1
n

sup
a∈HS

n

∑
i=1

σiai.

Applying Massart’s Lemma to the finite set HS ⊆ Rn, we obtain

Eσ

[
sup
h∈H

1
n

n

∑
i=1

σih(zi)

∣∣∣∣∣ S

]
≤ 1

n

√
2 log |HS| max

a∈HS
∥a∥2.
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Now observe that |HS| ≤ G(H, n), since the growth function counts the maximum number of distinct
labelings achievable on n points, and each a ∈ {0, 1}n satisfies ∥a∥2 ≤

√
n. Therefore,

Eσ

[
sup
h∈H

1
n

n

∑
i=1

σih(zi)

∣∣∣∣∣ S

]
≤ 1

n

√
2 logG(H, n) ·

√
n.

Taking expectation with respect to S ∼ Dn does not change the bound (since the right-hand side no longer
depends on S), and we conclude that

Rn(H) ≤
√

2 logG(H, n)
n

.

4 Conclusion

Theorem 1 (Generalization Bound via VC-Dimension). Let H ⊆ { f : Z → {0, 1}} be a hypothesis class,
and let d = VCdim(H). Then for any δ ∈ (0, 1), with probability at least 1 − δ over the choice of an i.i.d.
sample S ∼ Dn, every h ∈ H satisfies

R(h) ≤ R̂S(h) +

√
2d log

( en
d

)
n

+

√
log(1/δ)

2n
.

Sketch. From the standard Rademacher complexity bound, with probability at least 1 − δ,

R(h) ≤ R̂S(h) + 2Rn(H) +

√
log(1/δ)

2n , ∀h ∈ H.

By the previous lemma, we showed that

Rn(H) ≤
√

2 logG(H,n)
n .

Finally, applying the Sauer–Shelah lemma, we have

G(H, n) ≤
d

∑
i=0

(
n
i

)
≤
( en

d

)d .

Plugging this into the Rademacher complexity bound yields

Rn(H) ≤
√

2d log(en/d)
n

.

Substituting back, we obtain the stated inequality.
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5 Extra Read: Generalizing to Multi-Class Classification

The VC dimension is much more intuitive that Rademacher but it is defined specifically for binary classifica-
tion ({0, 1} or {−1, 1} labels). What if we have more than two classes? The Natarajan dimension provides
a natural generalization. I read about it from here wiki/Natarajan Dimension and Natarajan, B.K. On learning
sets and functions. Mach Learn 4, 67–97 (1989)

Definition 1 (Natarajan Dimension). Let H be a class of functions mapping from Z to {1, 2, . . . , k}. A
set S ⊂ Z is Natarajan-shattered by H if there exist two labelings (functions) y1 : S → {1, . . . , k} and
y2 : S → {1, . . . , k} such that y1(z) ̸= y2(z) for all z ∈ S, and for any subset B ⊆ S, there exists a
hypothesis h ∈ H such that:

h(z) =

{
y1(z) if z ∈ B
y2(z) if z ∈ S \ B

The Natarajan dimension of H is the size of the largest set S that can be Natarajan-shattered.

In essence, instead of generating all 2|S| binary labelings, the class must be rich enough to generate all 2|S|

”hybrid” labelings formed by picking between two pre-defined, distinct labelings for each point. For the
binary case (k = 2), if we choose y1 to be all 1s and y2 to be all 0s, the Natarajan dimension exactly reduces
to the VC dimension. Like the VC dimension, the Natarajan dimension can be used to derive generalization
bounds for multi-class classification problems, showing that the core idea of shattering is fundamental to
learning theory.

Disclaimer: These notes have not been scrutinized with the level of rigor usually applied to formal publica-

tions. Readers should verify the results before use.
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