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LECTURE 5: RADEMACHER COMPLEXITY

1 Introduction

Rademacher complexity framework allows for dealing with very large and infinite hypothesis classes. The
hypothesis class F maps inputs from a domain Z to real-valued outputs, allowing evaluation of loss functions
mapping to real numbers.

F:Z—-R

z=(xy)

The loss function L(h(x), y) quantifies the error of predicting /1(x) when the true label is y. We require the
loss to be bounded to measure risk properly.

Specific example Previously, we have encountered a hypothesis class, H, that contained hypothesis of the
form h : X — ). One can construct another hypothesis class of form F 2 LoH = {z — L(h,z) : h € H}.
Essentially, for f € F, we compute

f(x,y) = L(h(x),y)

Like before, risk Rp( f) measures the expected loss over the data distribution, representing the true general-
ization error, while empirical risk Rg(f) is the average loss on a finite samples, serving as an estimate of the
risk.

Rp(f) = Ezwplf(2)]
Empirical Risk :

Rs(f) = i}j:{f(zz‘)

Representativeness The function ¢(S) measures how representative a sample set S is, by capturing the
worst-case difference between true risk and empirical risk across all hypotheses in F. Smaller values indicate
samples are a good representative of the distribution.

A

¢(S) = sup(Rp(f) — Rs(f))

fer
The quantity ¢(S) is called the representativeness of S with respect to F.

In practice, we often do not have access to the data distribution D. Therefore, one natural approach to
estimate ¢(S) will be to divide S into training and validation sets. Splitting S into training and validation sets
S1 and S; allows estimation of the generalization gap. Consider,

S=51US5,51N5 =0

where S is the validation set and S; is the training set. Let

n
S1] = [S2| = 5
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We can use S; and S; to estimate ¢(S). Consider the maximum difference in empirical risks over the
hypothesis class:

N

sup(Rsl (f) - R52 (f))

fer

which measures the largest discrepancy in empirical performance on these two samples. To analyze this
difference, we introduce variables {c;}?_,, which take values in {—1,1}" as follows:

+1, ifz; € 5,
0 = .
—1, ifz; € 5,.

Using this notation, we can rewrite the supremum difference as

sup (j IOEEDS f<2)> = 2aupY aif(ai). n

fe}— z€Sy z€Sy fe}- i=1

The quantity in equation (1) acts as a motivation for defining Rademacher complexity.

Definition 1.1 (Radmacher random variable). A random variable X € {—1,1} is called Rademacher random
variable if :

Definition 1.2 (Empirical Rademacher Complexity). The Empirical Rademacher Complexity of the hypothesis
class F with respect to a dataset s = {z1,23,- - -z, } is defined as :

2

R5(F) = Eolsup(; Y- 0if ()]
feF i=1

where 0 = {01,07 - - - 0, } are independent Rademacher random variable.

Definition 1.3 (Rademacher Complexity).

R (F) = Esopr [Rs(F)] -

2 Main Results

Lemma 2.1. Let F be a hypothesis class satisfying
FCiflf:2— [0,

then the function

A

¢(S) = sup(Rp(f) — Rs(f))

feF

satisfies the bounded difference property

|-

\p(z1,22, - 2n) — (21,22, 2}, Ziv1, - - zn)| <
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1

|m{21/22:"'zn} - 9C{~{Z1,Zz,~~~,zl’.,z,'+1,-~~zn}| <

n
Theorem 2.2. Let z be a random variable with support in Z and distribution D. Let S = {z1,2p,- - -z, } be
a dataset of n i.i.d samples drawn from D. Let F be a hypothesis class such that

Feiflf:2—=[01,

Fix 6 € (0,1). With probability at least 1 — 6 over the choice of S we have V' f € F

. log 1
R(f) < Rs(f) +2%.(F) +
In addition, with probability at least 1 — & over choice of 6, we have Vf € F

2n

. log 2
R(f) < Rs +28t(F) + 31/ 20

2n
Proof. Recall that,

2

n

1
Rs(F) = Eolsup (- ) 0if (:))]

feF i=1
By the previous lemma :

Ry (F) = Espn [Rs(F)]

p: X" >R
fulfills the bounded difference property. Therefore from McDiarmids* inequality, with c;

_1
(322)
% G —2ne?
Plg(s) — Es[p(s)] > e <e miT =o€ =5
log ;
€= 2n
log ;
P |¢(s)] < Eslgp] + o >1-6
Forall f € F

N

Rp(f) = Rs(f) < sup(Rp(f) — Rs(f)) = ¢(s)

feF

log
<E
< Es[¢] + n
This theorem provides a high-probability uniform bound on the generalization gap

Sl

Rp(f) = Rs(f) -
challenge is to control or estimate the term

It measures how well the empirical risk approximates the true risk across all hypotheses f € F. The key

¢(S) = sup(Rp(f) — Rs(f))

fer
which depends on the unknown true risk Rp(f) involving the distribution D.
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Ghost sampling approach Let {z},z), - - - z},} be i.i.d samples, the generalization gap for a hypothesis f
is given by:

Rp(f) — Rs(f)

measures the deviation of empirical risk from the true risk.

Using the ghost sampling, this difference can be equivalently expressed as

Eg [Rg (f)] — Rs(f) = Esun[R5(f) — Rs(f)]

Taking the supremum and using the fact that the supremum of expectation is smaller than the expectation of
the supremum:

sup(Rp(f) — Rs(f)) < Eg~p[sup(Rp(f) — Rs(f))]
feF feFr

Taking expectation over S over both sides:

Eslp(s)] < IESND[IES’~D[JS[1€1£(RD(J[) — Rs(f))]

11Es s/ [sup E — f(z))]

f€.7: =

Observe that z; and Z; are i.i.d. random variables and can be replaced with each other without affecting
expectation:

%lEs,s/ [sup(f(z)) — f(2)) + Eixj(f(z1) = f(2i))] = LEgo [sup(f(zj) — f(2))) + Eixj(f(z1) - f(zi))]

feF n fer
Adding JL.H.S and JR.H.S:

Es[¢(S)] S%ES,S’ %Sup(f( f(zj) + ) (f(

feF i#]

4y sup(f(z)) — f()) + L (F() - f(zi))]

feF i

Introducing Rademacher random variables o}

Es[p(S)] < %Es,s',aj [SUP‘TJ(f( f(z) + Y _(f( ]
fer i#]

Repeating the procedure for all j’s

Es[p(5)] < JEssuT[supZ oi(f )—f(zi))]

feF i

Es[p(S)] < 1IES,scaj [SUP Y ai(f( +SUPZ—0'z'(f(Zz‘)]

eF i feF i
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The above holds as sup(A + B) < sup(A) + sup(B).

n 1
sup Z oi(f(z)| + EIES,O’

1
Es[¢(S)] < ~Eg o
n feF iz

sup iai(f(zi)]

feFi=1

Since, —o; has the same distribution as ¢;

Es[¢p(5)] < 2R, (F) .
Using the bounded difference property of fig (F) and using McDiarmid’s inequality, we can show that

_n2
i=1 32

The second inequality follows using (2). O

2.1 Elementary Properties

F,G : Two hypothesis classes, a € R, constant b € R
aF ={af | f e F}
F+G={f+glfeFged}

1.
F={h} = Rs(F)=0
2.
Rs(aF) = |a|Rs(F)

3.

FCG = Rs(F) <RKs(G)
4,

Rs(F +G) = Rs(F) + Rs(0)
5.

fﬁis(ﬂf—i—b) = ‘ll‘ff%s(./—")

These elementary properties allow us to analyze more complex hypothesis classes built from simpler ones.
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2.2 Ledoux-Talagrand Contraction Lemma

It is often beneficial to separate the analysis of loss functions from the analysis of predictor function classes.
For instance, consider the class of linear predictors, F, parameterized by weights w. Linear predictors are
frequently applied in both classification and regression tasks, typically paired with distinct loss functions
suited to each objective.

Let h(x) = (w, x) denote a linear predictor function. This functional form serves as the foundation for
algorithms in both classification—where the goal is to assign discrete labels, and regression, where the
objective is to predict continuous values.

* Classification loss function :
¢(t) = min(1, max(0,1 —t))
where
t=y({wx), ye{-1,1}
* Regression loss function :
t2
¢(t) = min(1, )
where
t=y—(wx)

To handle more complex loss functions applied to hypothesis outputs, we use contraction inequalities, which
show that applying a Lipschitz function ¢ to the elements of F does not increase the Rademacher complexity
by more than a factor determined by the Lipschitz constant.

Lemma 2.3. Let ¢ : R — R be a 1-Lipchitz continuous function, i.e.

|(t) = p(u)| < |t —ul
Let F be the hypothesis class F C {f | f : Z — R}. Define

O(F) ={¢(f) | feF}

Then we have

A

Rs(¢(F)) < Rs(F).

3 Application: Empirical Rademacher Complexity of Linear Predictors

We now apply the definitions and properties to compute the empirical Rademacher complexity of the linear
class F. Using the geometry of linear functions and vector norms, we obtain an upper bound that scales
inversely with /7 , showing how sample size controls complexity.

Lemma 3.1. Let
z:{z ||zl < Z}

F={z—= (w,z) | |lwl] < W}
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Let S = {z1,22, - - 2y} be a dataset of samples where z; € Z then

2

Rg(F) <

BE

Proof.

n

1
sup = Y_ oy {w;, zi>]
wlw|<w " i=1

sup 1 i(w, O'iZi>]

w:||wl|<w ™ i=1

Rs(F) = E,

A

Rs(F) = Ex

Using the Cauchy-Schwartz inequality,

. 1 <
Rs(F) < ~Ey | sup ZHWWMWEM
n w:||w|| <W i=1
W n
< ;IE(T | Z‘TiziH]
i=1
- :
W n
= —E, (H ZmziH%)
n i=1
- 1
W ! 2 :
< — <]Eo | Z@‘L‘Hz])
n | =1

==

i n n %
<IEU ZZUZO} ZIIZ] ])

Lj=1i=1

1
n 2
(i, Zj>>
=1

Since the Rademacher variables are independent with E[o;] = 0, E[oj] = 0 and E[o?] = 1 E[sz] =1, the
cross terms vanish when 7 # j:

J

I
==
T~

1=

Il
—_
-

1

W[ & :
%wmn(zm@
i=1
ggﬁz
WZ

S

Disclaimer: These notes have not been scrutinized with the level of rigor usually applied to formal publica-

tions. Readers should verify the results before use.
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