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Scribed by: Abhishek Gupta August 27, 2025

LECTURE 4: MCDIARMID’S INEQUALITY & APPLICATIONS

This lecture introduces McDiarmid’s Inequality, a powerful concentration inequality that bounds the deviation
of a function of many independent random variables from its expected value. Concentration inequalities
provide guarantees on how much a random variable can deviate from its expectation. McDiarmid’s inequality
is particularly useful because it applies to general functions, as long as they satisfy a stability condition
known as the bounded difference property. It is a generalization of Hoeffding’s inequality. Before delving
into McDiarmid’s Inequality, let us define Conditional Expectation.

Conditional Expectation. Let [E;[-| denote the expectation conditioned on X7.;. For any measurable function
h: X" - R, we have

E;[h(X1.p)] = E[h(X1.) | X1:4] = / ) h(x1) p(Xig1in | X1:) AXig1en,

where p(x;+1., | X1.) is the conditional density of X 1., given Xy.;.
Property (Law of Total Expectation). For any random variables X and Y, we have

Exy[h(X,Y)] = Ex[Ey[h(X,Y)|X]].

Proof. By the definition of conditional expectation
Byh V)X = | (XY = y)p(x = ylX)dy
pX,Y =y)
= h(X,Y=y)————=d
Sy "X =T G
Thus,

v PX=xY=y)
/yeyh(X =vY=y) p(X = x)

= hW(X=xY=y)p(X=xY =y)dydx
xeX,yey

= IEX,Y [h(X, Y)] .

p(X = x)dydx

Ex [Ev[1(X,Y)[X]] = |

xeXx

Now let’s state the MdDiarmid’s Inequality.

Theorem 1 (McDiarmid’s Inequality). Let X1, . .., Xy, be independent random variables, with X; € X;. Let
f: X x - x X, — R be a function such that for every i = 1,...,n, it satisfies the bounded difference

property:

sup |f(x1,-- x0) — f(x1, o, X1, Xh Xig1, o, %0)| <o
X1 e X X

Then for any € > 0,
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The core idea is that if changing one of the input variables X; does not change the value of the function f by
too much (at most by c;), then the function’s value will be concentrated around its mean.

Proof. The proof proceeds by constructing a martingale difference sequence and applying Hoeffding’s
Lemma. This technique, often called the method of bounded differences, breaks down the total deviation of
the function into a sum of smaller, more manageable terms.

Step 1: Defining the Martingale Sequence

Let gi(x1,...,x;) = E[f(Xy,...,Xn)|X1 = x1,...,X; = x;]. This is a function of the first i vari-
ables that represents the expected value of f after revealing the first 7 random variables. The sequence
20,81(X1),82(X12), - .., gn(Xq.) forms a special type of stochastic process known as a Doob martingale.
Each term in the sequence represents our best estimate of the final value of f given the information we have
seen so far.

Step 2: Introducing Dummy Variables

We can think of the sequence of conditional expectations in terms of a set of dummy and independent random
variables Xy and X, 1 bracketing the original sequence X;.,,. This helps define the boundary conditions for
our sequence g;. This allows us to treat the first and last steps of the process (i = 0 and i = 1) uniformly
with the intermediate steps.

* Without dummy variables: The function g; is defined as:
git) = [ fOanpGialadrin = [ fCrn)p(im)ds
/YiJrl:n ‘Xi+l:n
* After introducing dummy variables:

gi(x1:) = / £ 1) p(Xig 11 | X0: ) dXip 1041 = f (1) p(Xig 1) dXi 10
‘Xi+1:n+1 &

i+1:in

Observe that both definitions of g;(x1.;) are equivalent as X and X, ;1 are assumed to be independent.

Step 3: Fixing X; = x;

For a fixed set of values x1, ..., x;, the function g; is the expectation over the remaining random variables
XZ-‘rll o ,Xn:

Si(X1.i-1,%i) = f(x1:i-1, i, Xig1:0) P(Xit 10 ) AX i1
'Xi+1:n

= /X f(Xlzi—lrxi/Xi-i-l:n)p(Xi:n)dxi:n

=Ex,, [f(X1:i-1,Xi, Xit1:n)]
=E;_1[f(X1:i-1, %i, Xit1:n)]

Since the variables X, . .., X;, are independent, p(X;i1.,|X1:;) = P(Xit10)-
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Step 4: Defining the Difference Sequence

We now define a sequence of random variables, called a martingale difference sequence, fori =1,...,n:
Y; = gi(X1:4) — gi—1(X1:i-1)

This represents the change in expectation upon revealing X;. Each Y; represents the new information gained
by revealing the random variable X;. For a fixed realization of X7.;_1, we also define the bounds for Y;:

A= inf ¢i(Xy-1,%) — gi—1(X1:i-1)

x,-GX,-

B; = sup gi(X1.i-1,%i) — gi—1(X1:i-1)
x;€X;

Properties of the Difference Sequence

We now establish several key properties of this sequence {Y;} which are essential for completing the proof.

(i) Yi € [Ai, Bi].

Proof. For any realization of Xj;, the value of Y; is ;(X1./) — gi—1(X1:i—1). By definition, A; and B;
are the infimum and supremum of this quantity over all possible values of X;, holding X;.;_1 fixed.
Thus, any realized value of Y; must lie within these bounds. O

(i) E[Y;] = 0.

Proof. Recall that
E[Y;] = E;i1[gi(X1.)] — Ei—1[gi—1(X1.i-1)]-

Thus, it suffices to show that
E[gi(X1:) | X1:i-1] = gi-1(X1:i-1),
since clearly IE[g; 1 (X1.i-1) | X1:i—1] = &i—1(X1:i-1)-

Now, for fixed x1.;_1, we compute

E[gi(X1:) | X121 = X1:i-1) = /X Qi(x1:i-1, x;) p(x;) dx;

1

- /X]_ </‘;(i+1;7/, f(xrn) p(Xitan) dxi+1:n> p(x;) dx;
- /X F(x10) p(xin) i

— B[f(X1) | X1io1 = X1i]
= gi—l(xlzifl)-

Therefore, E[Y;| X1.i—1] = E[gi(X1.1)| X1:i—1] —E[gi—1(X1:i-1)| X1:i-1] = -1 (X1:im1) — &i—1(X1:21) =

0. This property is the formal definition of a martingale difference sequence. It means that, on average,
each new piece of information does not systematically shift our expectation up or down. O
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(iii) Y; only depends on X3, ..., X;.

Proof. By definition, g; is a function of X7.; and g;_1 is a function of X1.;_1. Therefore, their difference
Y; can only depend on variables up to and including index i. O

iv) Y1 Y = f(X1) — E[f (X10)].

Proof. By definition,

=

n

Y gi(X1i) = ) gi-1(Xuiic1) = &n(Xain) — 80(X10)

=1 i=1 i=1 i=1

D=
=
I
D=
)
:
I

Now note that g, (X1.,) = E[f(X1.n) | Fu). Since f(Xy.,) is F,-measurable, it follows that

gn(Xlzn) == f(Xlzn)-

Similarly, go(X1.0) = E[f(X1.1) | Fo]. Because Fy is the trivial c-algebra, we obtain

80(X10) = E[f(X1:0)]-

Therefore, i
.Z;Yi = gn(Xun) —8o(Xw0) = f(X1n) — E[f (X1n)].
iz
]
(v) Bi—Ai <.
Proof. From the definitions of A; and B;:
Bi— A= sup 8i(X1:i-1, %) — i?(fgi(xlzifl/xl/')
= sup (gi(Xp:i-1, %) — &i(X1i1,X7))
%]
=supE[f(...,x;,...) — f(-.., x}, . .)| Xqio1]
%!
<Ef[sup|f(...,xi,...) = f(.o,xt, .. )| Xvic1] < Elei|Xy.-1] = ¢
X!
]

Main Proof Continuation

Let S = f(X1.n) — E[f(X1:1)] = X4 Yi. Forany £ > 0, we use the bounding technique starting with

Markov’s inequality:
n
P(S > ¢€) = P(e" > €') < e E[e'S] = ¢ ™E |exp (t EYi>]
i=1
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Our goal is to bound the moment-generating function [E [ets]. We can do this by iteratively applying the law
of total expectation as defined in Property-1. We start by conditioning on X7.,,_1:

n

Efexp(t )" ¥)] = E[E[exp(t ) ¥)|X1,01]]

i=1 i=1

The inner expectation, [E [etY" | X1.1—1], can now be bounded. This is the crucial step where the properties of
the martingale difference sequence is used. Since we proved that E[Y}| X7.,—1] = 0 and Y}, is bounded in an
interval of length B, — A, < c,,, Hoeffding’s Lemma gives E[e!""|X1.,_1] < exp( tzgcﬁ ). Substituting this
back, we get:

Elexp(t 1Y) < Elexp(t L V)] exp( ")

We can apply this argument iteratively, conditioning on Xj.,_», then X1.,,_3, and so on. This process, starting
from Y;, and working backwards to Y7, effectively gives off one term at a time, applying the Hoeffding bound
at each step. This gives the final bound on the function:

. Py
Elexp(t ) Yi)] < exp ( —=—

i=1

Plugging this into the Markov inequality expression gives:

2y c?
P(S > €) < exp(—te + % L)
To get the tightest bound, we minimize the right-hand side with respect to {. The minimum occurs at t = )51‘;2,

which gives:

4e*>  16€*y c? 2¢€?
P(s2¢) <ep <_2c2 " 8(2&)2) b (‘1(;2)
1 1 = 1

This concludes the proof.

Application Taking f(X1,..., X,) = 1 Y, X;, where each X; € [a;, b;] immediately gives us Hoeffding’s

_ bi—a;

inequality. Note that in this case c;

Disclaimer: These notes have not been scrutinized with the level of rigor usually applied to formal publica-

tions. Readers should verify the results before use.



