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LECTURE 4: MCDIARMID’S INEQUALITY & APPLICATIONS

This lecture introduces McDiarmid’s Inequality, a powerful concentration inequality that bounds the deviation
of a function of many independent random variables from its expected value. Concentration inequalities
provide guarantees on how much a random variable can deviate from its expectation. McDiarmid’s inequality
is particularly useful because it applies to general functions, as long as they satisfy a stability condition
known as the bounded difference property. It is a generalization of Hoeffding’s inequality. Before delving
into McDiarmid’s Inequality, let us define Conditional Expectation.

Conditional Expectation. Let Ei[·] denote the expectation conditioned on X1:i. For any measurable function
h : X n → R, we have

Ei[h(X1:n)] = E[h(X1:n) | X1:i] =
∫
Xi+1:n

h(x1:n) p(xi+1:n | x1:i) dxi+1:n,

where p(xi+1:n | x1:i) is the conditional density of Xi+1:n given X1:i.

Property (Law of Total Expectation). For any random variables X and Y, we have

EX,Y[h(X, Y)] = EX[EY[h(X, Y) | X] ] .

Proof. By the definition of conditional expectation

EY[h(X, Y)|X] =
∫

y∈Y
h(X, Y = y)p(Y = y|X)dy

=
∫

y∈Y
h(X, Y = y)

p(X, Y = y)
p(X)

dy

Thus,

EX [EY[h(X, Y)|X]] =
∫

x∈X

∫
y∈Y

h(X = x, Y = y)
p(X = x, Y = y)

p(X = x)
p(X = x)dydx

=
∫

x∈X ,y∈Y
h(X = x, Y = y)p(X = x, Y = y)dydx

= EX,Y[h(X, Y)] .

Now let’s state the MdDiarmid’s Inequality.

Theorem 1 (McDiarmid’s Inequality). Let X1, . . . , Xn be independent random variables, with Xi ∈ Xi. Let
f : X1 × · · · × Xn → R be a function such that for every i = 1, . . . , n, it satisfies the bounded difference
property:

sup
x1,...,xn,x′i

| f (x1, . . . , xn)− f (x1, . . . , xi−1, x′i , xi+1, . . . , xn)| ≤ ci

Then for any ϵ > 0,

P( f (X1, . . . , Xn)− E[ f (X1, . . . , Xn)] ≥ ϵ) ≤ exp
(
− 2ϵ2

∑n
i=1 c2

i

)
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The core idea is that if changing one of the input variables Xi does not change the value of the function f by
too much (at most by ci), then the function’s value will be concentrated around its mean.

Proof. The proof proceeds by constructing a martingale difference sequence and applying Hoeffding’s
Lemma. This technique, often called the method of bounded differences, breaks down the total deviation of
the function into a sum of smaller, more manageable terms.

Step 1: Defining the Martingale Sequence

Let gi(x1, . . . , xi) = E[ f (X1, . . . , Xn)|X1 = x1, . . . , Xi = xi]. This is a function of the first i vari-
ables that represents the expected value of f after revealing the first i random variables. The sequence
g0, g1(X1), g2(X1:2), . . . , gn(X1:n) forms a special type of stochastic process known as a Doob martingale.
Each term in the sequence represents our best estimate of the final value of f given the information we have
seen so far.

Step 2: Introducing Dummy Variables

We can think of the sequence of conditional expectations in terms of a set of dummy and independent random
variables X0 and Xn+1 bracketing the original sequence X1:n. This helps define the boundary conditions for
our sequence gi. This allows us to treat the first and last steps of the process (i = 0 and i = n) uniformly
with the intermediate steps.

• Without dummy variables: The function gi is defined as:

gi(x1:i) =
∫
Xi+1:n

f (x1:n)p(xi+1:n|x1:i)dxi+1:n =
∫
Xi+1:n

f (x1:n)p(xi+1:n)dxi+1:n

• After introducing dummy variables:

gi(x1:i) =
∫
Xi+1:n+1

f (x1:n)p(xi+1:n+1|x0:i)dxi+1:n+1 =
∫
Xi+1:n

f (x1:n)p(xi+1:n)dxi+1:n

Observe that both definitions of gi(x1:i) are equivalent as X0 and Xn+1 are assumed to be independent.

Step 3: Fixing Xi = xi

For a fixed set of values x1, . . . , xi, the function gi is the expectation over the remaining random variables
Xi+1, . . . , Xn:

gi(X1:i−1, xi) =
∫
Xi+1:n

f (x1:i−1, xi, xi+1:n)p(xi+1:n)dxi+1:n

=
∫
Xi:n

f (X1:i−1, xi, Xi+1:n)p(Xi:n)dxi:n

= EXi:n [ f (X1:i−1, xi, Xi+1:n)]

= Ei−1[ f (X1:i−1, xi, Xi+1:n)]

Since the variables X1, . . . , Xn are independent, p(xi+1:n|x1:i) = p(xi+1:n).
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Step 4: Defining the Difference Sequence

We now define a sequence of random variables, called a martingale difference sequence, for i = 1, . . . , n:

Yi = gi(X1:i)− gi−1(X1:i−1)

This represents the change in expectation upon revealing Xi. Each Yi represents the new information gained
by revealing the random variable Xi. For a fixed realization of X1:i−1, we also define the bounds for Yi:

Ai = inf
xi∈Xi

gi(X1:i−1, xi)− gi−1(X1:i−1)

Bi = sup
xi∈Xi

gi(X1:i−1, xi)− gi−1(X1:i−1)

Properties of the Difference Sequence

We now establish several key properties of this sequence {Yi} which are essential for completing the proof.

(i) Yi ∈ [Ai, Bi].

Proof. For any realization of X1:i, the value of Yi is gi(X1:i)− gi−1(X1:i−1). By definition, Ai and Bi
are the infimum and supremum of this quantity over all possible values of Xi, holding X1:i−1 fixed.
Thus, any realized value of Yi must lie within these bounds.

(ii) E[Yi] = 0.

Proof. Recall that
E[Yi] = Ei−1[gi(X1:i)]− Ei−1[gi−1(X1:i−1)].

Thus, it suffices to show that

E[gi(X1:i) | X1:i−1] = gi−1(X1:i−1),

since clearly E[gi−1(X1:i−1) | X1:i−1] = gi−1(X1:i−1).

Now, for fixed x1:i−1, we compute

E[gi(X1:i) | X1:i−1 = x1:i−1] =
∫
Xi

gi(x1:i−1, xi) p(xi) dxi

=
∫
Xi

(∫
Xi+1:n

f (x1:n) p(xi+1:n) dxi+1:n

)
p(xi) dxi

=
∫
Xi:n

f (x1:n) p(xi:n) dxi:n

= E[ f (X1:n) | X1:i−1 = x1:i−1]

= gi−1(x1:i−1).

Therefore, E[Yi|X1:i−1] = E[gi(X1:i)|X1:i−1]−E[gi−1(X1:i−1)|X1:i−1] = gi−1(X1:i−1)− gi−1(X1:i−1) =
0. This property is the formal definition of a martingale difference sequence. It means that, on average,
each new piece of information does not systematically shift our expectation up or down.
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(iii) Yi only depends on X1, . . . , Xi.

Proof. By definition, gi is a function of X1:i and gi−1 is a function of X1:i−1. Therefore, their difference
Yi can only depend on variables up to and including index i.

(iv) ∑n
i=1 Yi = f (X1:n)− E[ f (X1:n)].

Proof. By definition,

n

∑
i=1

Yi =
n

∑
i=1

(
gi − gi−1

)
=

n

∑
i=1

gi(X1:i)−
n

∑
i=1

gi−1(X1:i−1) = gn(X1:n)− g0(X1:0)

Now note that gn(X1:n) = E[ f (X1:n) | Fn]. Since f (X1:n) is Fn-measurable, it follows that

gn(X1:n) = f (X1:n).

Similarly, g0(X1:0) = E[ f (X1:n) | F0]. Because F0 is the trivial σ-algebra, we obtain

g0(X1:0) = E[ f (X1:n)].

Therefore,
n

∑
i=1

Yi = gn(X1:n)− g0(X1:0) = f (X1:n)− E[ f (X1:n)].

(v) Bi − Ai ≤ ci.

Proof. From the definitions of Ai and Bi:

Bi − Ai = sup
xi

gi(X1:i−1, xi)− inf
x′i

gi(X1:i−1, x′i)

= sup
xi ,x′i

(
gi(X1:i−1, xi)− gi(X1:i−1, x′i)

)
= sup

xi ,x′i

E[ f (. . . , xi, . . . )− f (. . . , x′i , . . . )|X1:i−1]

≤ E[sup
xi ,x′i

| f (. . . , xi, . . . )− f (. . . , x′i , . . . )||X1:i−1] ≤ E[ci|X1:i−1] = ci.

Main Proof Continuation

Let S = f (X1:n)− E[ f (X1:n)] = ∑n
i=1 Yi. For any t > 0, we use the bounding technique starting with

Markov’s inequality:

P(S ≥ ϵ) = P(etS ≥ etϵ) ≤ e−tϵE[etS] = e−tϵE

[
exp

(
t

n

∑
i=1

Yi

)]
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Our goal is to bound the moment-generating function E[etS]. We can do this by iteratively applying the law
of total expectation as defined in Property-1. We start by conditioning on X1:n−1:

E[exp(t
n

∑
i=1

Yi)] = E[E[exp(t
n

∑
i=1

Yi)|X1:n−1]]

= E[exp(t
n−1

∑
i=1

Yi)E[etYn |X1:n−1]]

The inner expectation, E[etYn |X1:n−1], can now be bounded. This is the crucial step where the properties of
the martingale difference sequence is used. Since we proved that E[Yn|X1:n−1] = 0 and Yn is bounded in an
interval of length Bn − An ≤ cn, Hoeffding’s Lemma gives E[etYn |X1:n−1] ≤ exp( t2c2

n
8 ). Substituting this

back, we get:

E[exp(t
n

∑
i=1

Yi)] ≤ E[exp(t
n−1

∑
i=1

Yi)] exp(
t2c2

n
8

)

We can apply this argument iteratively, conditioning on X1:n−2, then X1:n−3, and so on. This process, starting
from Yn and working backwards to Y1, effectively gives off one term at a time, applying the Hoeffding bound
at each step. This gives the final bound on the function:

E[exp(t
n

∑
i=1

Yi)] ≤ exp
(

t2 ∑n
i=1 c2

i
8

)
Plugging this into the Markov inequality expression gives:

P(S ≥ ϵ) ≤ exp(−tϵ +
t2 ∑ c2

i
8

)

To get the tightest bound, we minimize the right-hand side with respect to t. The minimum occurs at t = 4ϵ
∑ c2

i
,

which gives:

P(S ≥ ϵ) ≤ exp
(
− 4ϵ2

∑ c2
i
+

16ϵ2 ∑ c2
i

8(∑ c2
i )

2

)
= exp

(
− 2ϵ2

∑n
i=1 c2

i

)
This concludes the proof.

Application Taking f (X1, . . . , Xn) =
1
n ∑n

i=1 Xi, where each Xi ∈ [ai, bi] immediately gives us Hoeffding’s
inequality. Note that in this case ci =

bi−ai
n .

Disclaimer: These notes have not been scrutinized with the level of rigor usually applied to formal publica-

tions. Readers should verify the results before use.

5


