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LECTURE 3: FANO’S INEQUALITY AND APPLICATIONS

1 Introduction

So far, we have focused on problems concerning the sufficiency of sample sizes. For instance, we might ask
for the minimum number of samples n required for an algorithm like Empirical Risk Minimization (ERM) to
work with a certain guarantee.

Now, we shift our perspective to ask a different question: what happens if 7 is not sufficient? We want to
determine the necessary number of samples for any learning algorithm to succeed. This involves establishing
lower bounds on the sample complexity.

The general setting we consider is as follows:

1. Nature picks a "true” hypothesis f from a finite hypothesis class H.
2. A dataset S of size 1 is generated, conditioned on the choice of f.

3. A learner observes the dataset S and produces an estimate f € H. This process defines a Markov
Chain: f —+ S — f.

Our goal is to understand the conditions under which the probability of making a mistake, IP [ f # f } ,1s

high, regardless of the learning algorithm used.

2 Information Theory Basics

2.1 Entropy

Definition 1 (Entropy). The entropy of a discrete random variable X with support X and probability mass
function p(x) is defined as:

H(X) = =} p(x)log(p(x)) -

xeX

Entropy measures the average uncertainty of a random variable. It has the following properties:

1. H(X) > 0.
2. H(X) <log|X]|.

Proof of property 2. We use Jensen’s inequality, which states that for a concave function ¢, we have
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E[¢(Y)] < ¢(E[Y]). The logarithm function is concave.

=~ I, ot = X pis g (5 ) = e s ()|

<log (]EXNP [pé()}) (by Jensen’s inequality )

1
:10g<2p px>:log<21>:log)(|.
xeX xeX

O

Definition 2 (Conditional Entropy). The conditional entropy of a random variable Y given X is defined as:

H(Y|X) =) Px(x)H(Y|X =x)

xeX
=— ) Px(x) ) Pyx(ylx)log Pyx(y|x)
xeX yey
=— ), Pxy(x,y)logPyix(ylx).
xeX yey

Fact 1 (Chain Rule for Entropy). The joint entropy of two random variables X and Y can be expressed as:
H(X,Y)=H(X)+ H(Y|X) .

Similarly, for three variables: H(X,Y|Z) = H(X|Z) + H(Y|X, Z).

2.2 Mutual Information

Definition 3 (Mutual Information). The mutual information between two random variables X and Y is
defined as:

_ X, Pxy(xy)
I(X’ Y) a xE/X;yEy PXY( y) log P ( )PY(y)

Mutual information measures the reduction in uncertainty about one random variable given knowledge of
another. It has the following key properties:

1. I(X,Y)>0.
2. I(X,Y) = 0if and only if X and Y are independent.
3. I(X,Y) = H(X) — H(X]|Y).
Fact 2 (Conditioning Reduces Entropy). For any two random variables X and Y, we have:
H(X|Y) < H(X).

This follows directly from the properties [(X,Y) = H(X) — H(X|Y) and I(X,Y) > 0.
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Definition 4 (Conditional Mutual Information). The mutual information between X and Y conditioned on a
third variable Z is:

I(X,Y|Z)=H(X|Z)-H(X|Y,Z) .
Fact 3 (Chain Rule for Mutual Information).

I(X,(Y,2)) = [(X,Y) + (X, Z]Y) .

Proof of fact 3. The definition of mutual information is I(X,Y) = H(X) — H(X|Y). The definition of
conditional mutual information is I(X,Y|Z) = H(X|Z) — H(X|Y, Z).

RHS = I(X,Y) + I(X, Z|Y)

[H(X)—H(X|Y)] + [H(X|Y) — H(X|Y,Z)] (substituting the definitions)
= H(X) - H(X|Y) + H(X|Y) - H(X|Y, Z)

= H(X) — H(X|Y,Z) (canceling terms)

=1I1(X,(Y,Z)) =LHS (by the definition of mutual information)

3 Markov Chains and the Data Processing Inequality

Definition 5 (Markov Chain). Random variables X,Y,Z are said to form a Markov Chain, denoted X —
Y — Z, if their joint probability distribution can be written as:

Pxyz(x,y,2) = Px(x)Pyx (y|x)Pzy(zly) -

This is equivalent to the statement that X and Z are conditionally independent given Y, which implies
I(X,Z]Y)=0.

Theorem 1 (Data Processing Inequality). If X — Y — Z form a Markov Chain, then
I(X,Z) <I(X,Y).

Intuitively, no amount of processing on 'Y (to get Z) can increase the information that Y contains about X.

Proof. By the chain rule for mutual information, we have two ways to expand I(X, (Y, Z)):

I(X,(Y,2))

(X,Y)+I(X,Z|Y)

I
I(X,Z) +1(X,Y|Z)

Since X — Y — Z is a Markov chain, we know (X, Z|Y) = 0. Therefore:
[(X,Y) = I(X,Z) + I(X,Y|Z)

Because mutual information is non-negative, I(X,Y|Z) > 0. Thus, we conclude that I(X,Y) > I(X, Z).
U
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4 Fano’s Inequality

Fano’s inequality provides a lower bound on the probability of error for any estimator in a classification
problem. It connects the probability of error with the conditional entropy of the true hypothesis given the
data.

Theorem 2 (Fano’s Inequality). Consider the learning setup where Nature picks a true hypothesis f e H,
data S is generated conditioned on f, and a learner produces an estimate f from S. For any such estimator

f, the probability of error P, = P [f # f] is bounded. A simplified and useful version of the inequality is:

P.log|H| > H(f|S) — log(2) .

Corollary 1 (Simplified Fano’s Inequality). Let the true hypothesis f be chosen uniformly at random from
the hypothesis class H. Then H(f) = log|H|. Using the relation H(f|S) = H(f) — I(f,S), we can
rearrange the inequality to get:

. I(f,S) +1og2
]P[f#f}zl_ log ||

This form is particularly useful. To get a high probability of error (i.e., a lower bound close to 1), we need to
show that the mutual information I(f, S) is small compared to log |H|.

S A Lower Bound on Sample Complexity

Our goal is to construct a learning problem where any algorithm must fail. To do this using Fano’s inequality,
we need to find an upper bound on the mutual information I(f, S).

5.1 Kullback-Leibler (KL) Divergence

Definition 6 (KL Divergence). Let P and Q be two probability distributions on the same support X, with
probability mass functions p(x) and g(x) respectively. The KL-divergence between P and Q is defined as:

KL(P||Q) = Y p(x)log )

xeX q(x) .

Fact 4 (Additivity of KL Divergence). Let Pxy and Qxy be product distributions, i.e., Pxy = PxPy and
Qxy = QxQy. Then:

KL(Pxy||Qxy) = KL(Px||Qx) + KL(Py||Qy) .
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5.2 Bounding Mutual Information via KL Divergence

The mutual information can be expressed in terms of KL divergence. When f is uniform over #:

Prs(f.S)

1(F.5) E[;Pfs 150108 5 (7 pi(s)
Psi£(S)
- /;f;%f 108 .75

Using the convexity of KL-divergence and expanding the Ps in the denominator, one can further show that:

1(£,5) < |71‘z 2 ), KL(Psiz || Psjp)-

feH fleH
Since the dataset S consists of 7 i.i.d. samples, by the additivity of KL divergence, this becomes:

I(f,S) < W Y Y KL(Pxyir | Pxyip)-
feH fler

5.3 The Main Result

Theorem 3. Nature picks a ’true” hypothesis f umformly at random from ‘H. Then a dataset of n iid
samples is generated conditioned on the choice of f The learner infers f from the data. There exists a
specific learning problem and data distribution such that if the number of samples n satisfies:

_ log([#1)/2 ~ log?
48¢2

for afixed e € (0,1/8), the learning fails, i.e. IP [ f # f ] > %, for any mechanism that a learner could use
for picking f .

Proof. We construct a ”hard” learning problem.

1. Constructing the hypothesis class: Let the input space be Z = {zj,...,z4}. For each vector
7 € {—1,1}, define a hypothesis /i, : Z — {—1,1} such that h.(z;) = T;. The hypothesis class is
H={h:7€{-1,1}} s0 |H| =2".

2. Defining the data distribution: Nature picks a T uniformly at random, setting the true hypothesis
f = he. For each sample (x;,y;) in the dataset S:

* x; is chosen uniformly from Z.

* The label y; is a noisy version of the true label f (x;). Specifically, if x; = zj,

1 .
~ 5+2 ify=r1
P i =Y\xXi =2z, ] = hT =2 ]

5



Instructor: Adarsh Barik Lecture 3, COV878
Scribed by: Akshat Jha August 21, 2025

3. Bounding KL divergence: For any two distinct hypotheses f, f' € H, we compute the KL divergence
between their corresponding data distributions. Since Py, ¢ is uniform and independent of f, the KL
divergence simplifies:

KL(Pxyif I Pxyif) = Zwalog el

ye{-11}x€Z xylf
|x.f
= ¥ X PuPlog st
ye{-11}xeZ ! Py sz
1 Py s
4 Z Epy\xrflogp _
ye{-11}xeZ ylx.f
d Pyle=s,f
< ) Pgslogy—=
dyE{fl,l} Pyx—zf

The last inequality is due to the fact that P|,_¢ ¢(+) and P, 7(-) differ only when f(%) # f(x) for
some ¥ € Z. Also, notice that this can only happen for a maximum of d samples in Z. Furthermore,
due to our construction:

. 149 1_9
Y Py log f”:(l“e)log o) e
ye{-11} \x f() 2 7 —2€ 2 _|_2€

< 48¢* fore € (0,1/8).

4. Bound mutual information: Plugging this into our bound for I(f, S):

1(7,8) < == ¥ Y KL(Pg/|Ps 7)
‘H| feM feH

~H]2 Y. Y KL(PxyiflPxyf) S Z 48e? = n - 48¢” .
ferGH e

5. Apply Fano’s inequality:

A I(f,S) + log2
>1__VM’/=/ "o~

]P[f#f}_l log | H|

_ 48ne* +log?2

- dlog?2

We want this probability to be at least %

_ 48ne? +1og2 _ 1 dlog2

dlog(2)/2 —log2
dlog2 2 7 2

48¢2

> 48ne® +1log2 = n <

Since log |H | = dlog 2, this proves the theorem.
O

This result provides a fundamental limit on learnability, showing that if the sample size is too small relative
to the complexity of the hypothesis class (measured by log |7{|) and the difficulty of the problem (inversely
related to €), no algorithm can be guaranteed to succeed.
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5.4 Connection to PAC Learning

The previous subsection demonstrated that it is possible to construct instances where the probability that
f # f remains bounded away from zero. However, this fact alone does not immediately imply a poor
generalization (or risk) bound in the PAC framework. In this subsection, we provide an informal proof-sketch
to connect the earlier result to the PAC setting.

We assume that nature picks the f = h as the “true” hypothesis. We denote the corresponding induced joint
distribution on (x,y) as P} . One can compute the risk of any hypothesis 1 € H as:

R(K) = Buy)py, [101(x) £ 1)
= Y Y Piy(xylh(x) #y)

ye{-1,1} x€Z

d
= Y. Y PRE)PY e, (h(z) # )

ye{-1,1}i=1

1 d
= Y (Pl v = WAz #7) + Pl (v =~ (=) = 7))

S
m
u

= (5-20)+ 5 Y U(z) £ 7)

i=1

Notice that R(h) is minimized by picking i = k.. Furthermore, one can also show that Y, T(h(z;) #
7;) = Q(d) in expectation.

Therefore, for any h # he,

R(h) > R(hz) + Qe) .

Disclaimer: These notes have not been scrutinized with the level of rigor usually applied to formal publica-

tions. Readers should verify the results before use.



	Introduction
	Information Theory Basics
	Entropy
	Mutual Information

	Markov Chains and the Data Processing Inequality
	Fano's Inequality
	A Lower Bound on Sample Complexity
	Kullback-Leibler (KL) Divergence
	Bounding Mutual Information via KL Divergence
	The Main Result
	Connection to PAC Learning


