Adarsh Barik

Research Fellow • Institute of Data Science • National University of Singapore abarik@nus.edu.sg • https://adarsh-barik.github.io/

Research Interests

- Statistical Machine Learning
- High-Dimensional Data Analysis

Education

• National University of Singapore Institute of Data Science	Singapore 2023 – now
 Program: Research Fellow, Host: Profess Developing online learning algorithms f 	
• Purdue University Department of Computer Science	West Lafayette, USA 2017 – 2023
	n Honorio, GPA: 4.0/4.0 s for combinatorial problems - extended beyond convexity etical bounds on the sample and computational complexity
• Indian Institute of Technology Madras Department of Aerospace Engineering	Chennai, India 2008 – 2013
Program: B.Tech and M.Tech, Advisor: IDeveloped mathematical and computation	
Publications and Preprints	
1. Exact Support Recovery in Federated Regree Adarsh Barik, Jean Honorio	ssion with One-shot Communication Transactions on Machine Learning Research (TMLR), 2023
2. Provable Computational and Statistical Gua Games	arantees for Efficient Learning of Continuous-Action Graphical

Adarsh Barik, Jean Honorio International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2023

- 3. Sparse Mixed Linear Regression with Guarantees: Taming an Intractable Problem with Invex Relaxation Adarsh Barik, Jean Honorio International Conference on Machine Learning (ICML), 2022 Acceptance rate < 20%
- 4. A Simple Unified Framework for High Dimensional Bandit Problems Wenjie Li, Adarsh Barik, Jean Honorio International Conference on Machine Learning (ICML), 2022 Acceptance rate < 20%
- 5. Provable Sample Complexity Guarantees for Learning of Continuous-Action Graphical Games With Nonparametric Utilities International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2022 Adarsh Barik, Jean Honorio
- 6. Information Theoretic Limits for Standard and One-Bit Compressed Sensing with Graph-Structured Sparsity

Adarsh Barik, Jean Honorio International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2022

- 7. Fair Sparse Regression with Clustering: An Invex Relaxation for a Combinatorial Problem Adarsh Barik, Jean Honorio Neural Information Processing Systems (NeurIPS), 2021 **Spotlight**, Acceptance rate < 3%
- 8. Information-Theoretic Bounds for Integral Estimation Donald Q. Adams, Adarsh Barik, Jean Honorio IEEE International Symposium on Information Theory (ISIT), 2021

- Optimization
- Information Theory

- 9. Learning Discrete Bayesian Networks in Polynomial Time and Sample Complexity Adarsh Barik, Jean Honorio IEEE International Symposium on Information Theory (ISIT), 2020
- 10. Learning Bayesian Networks with Low Rank Conditional Probability Tables

 Adarsh Barik, Jean Honorio
 Neural Information Processing Systems (NeurIPS), 2019

 Acceptance rate < 22%</td>
- 11. **Information Theoretic Limits for Linear Prediction with Graph-Structured Sparsity** *Adarsh Barik, Jean Honorio, Mohit Tawarmalani IEEE International Symposium on Information Theory (ISIT), 2017*
- 12. Invex programs First Order Algorithms and Their Convergence
 Adarsh Barik, Suvrit Sra, Jean Honorio
 Preprint
- 13. On exact solutions of the inner optimization problem of adversarial robustness Deepak Maurya, Adarsh Barik, Jean Honorio

Talks

• Outlier Oblivious Robust Online Optimization

IIT Kanpur, India and TIFR, India, 2024

Preprint

- Sparse Mixed Linear Regression with Guarantees: Taming an Intractable Problem with Invex Relaxation Spotlight International Conference on Machine Learning (ICML), 2022
- A Simple Unified Framework for High Dimensional Bandit Problems
 Spotlight
 International Conference on Machine Learning (ICML), 2022
- Provable Sample Complexity Guarantees for Learning of Continuous-Action Graphical Games With Nonparametric Utilities

International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2022

• Information Theoretic Limits for Standard and One-Bit Compressed Sensing with Graph-Structured Sparsity

International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2022

- Fair Sparse Regression with Clustering: An Invex Relaxation for a Combinatorial Problem
 Spotlight
 Neural Information Processing Systems (NeurIPS), 2021
- Learning Discrete Bayesian Networks in Polynomial Time and Sample Complexity
- IEEE International Symposium on Information Theory (ISIT), 2020
 Learning Bayesian Networks with Low Rank Conditional Probability Tables

Neural Information Processing Systems (NeurIPS), 2019

• Information Theoretic Limits for Linear Prediction with Graph-Structured Sparsity

IEEE International Symposium on Information Theory (ISIT), 2017

Teaching

- Instructor, Purdue University
 - Business Statistics, MGMT305, Summer 2017 Outstanding Instructor Award
- Teaching Assistant, Purdue University
 - Statistical Machine Learning, CS578, Fall 2017, Spring 2018, Spring 2020, Spring 2023
 - Computational Methods in Optimization, CS520, Spring 2021
 - Numerical Methods, CS314, Fall 2020, Fall 2021
 - Foundation of Computer Science, CS182, Summer 2020, Summer 2021

Service

• PC Member (Reviewer): NeurIPS 2023, AISTATS 2023, NeurIPS 2022, ICML 2022, AISTATS 2022, AISTATS 2021

• Associate Software Developer, FlexTrade Systems, India

- Worked on high-performance execution management and order management systems for equities, foreign exchange, options, futures, and fixed income

Project Trainee, Honeywell Technology Solutions, India

 Studied various modeling techniques for squeeze film dampers and damping simulation on bolted flange joints under high-loading conditions

Other Projects

• IITMSAT Satellite Project

- Founding member of the first student satellite project of IIT Madras
- Leader of the structures subsystem and was responsible for the vibrational and structural robustness of the satellite structure

Minimum Area Polygon Problem

- Used Genetic algorithm to provide a novel greedy algorithm for finding a simple polygon with minimum enclosed area for a given number of data points
- Formulated the algorithm and implemented using MATLAB[®]
- ASTROSAT Project
 - Worked on structural analysis of CZT (Calcium-Zinc-Telluride) Imager of ASTROSAT satellite for an improved vibrational and thermal performance

Relevant Courses

Grade A or better

- Statistical Machine Learning
- Artificial Intelligence
- Hands-on Learning Theory
- High-Dimensional Data Analysis

- Algorithm Design and Analysis
- Computational Methods in Optimization
- Randomized Algorithm

Relevant Programing Experience

Core technical skills: Python, C++, C, MATLAB[®], shell script, LATEX

- Classroom projects https://github.com/Adarsh-Barik
 - Python, Implemented a multiclass support vector machine classifier to recognize characters using Chars 74K data set (English characters) which contained code for feature extraction, model generation, hyperparameter estimation and cross-validation
 - Python, Implemented Sequential Minimization Optimization algorithm from scratch to solve soft margin problem in support vector machines
 - Python, Implemented two-phase Simplex algorithm from scratch to solve linear programs
 - Python, Implemented a basic peer-to-peer chat application from scratch with no centralized server
- Master's project
 - Python, Designed a three-dimensional mathematical model using Navier-Stokes equations and membrane equation to study flow-structure interaction and implemented it using MacCormack's finite-difference scheme
- Professional Software Developer
 - C++, Designed and implemented custom trading strategies and customizable click-and-trade front-end applications as a professional software developer for 2 years

Professional Experience

2013-2015

2011

Indian Institute of Technology Madras

Indian Institute of Technology Madras

Tata Institute of Fundamental Research

References

- 1. Vincent Y. F. Tan
 - Professor, Department of Mathematics and Department of Electrical and Computer Engineering, National University of Singapore
 - Email: vtan@nus.edu.sg
- 2. Jean Honorio
 - Senior Lecturer, School of Computing and Information Systems, The University of Melbourne
 - Adjunct Professor, Department of Computer Science and Department of Statistics, Purdue University
 - Email: jhonorio@unimelb.edu.au, jhonorio@purdue.edu
- 3. Petros Drineas
 - Professor and Associate Head, Department of Computer Science, Purdue University
 - Email: pdrineas@purdue.edu